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1 Solve the inequality|2x − 3| > 5. [3]

2 Show thatä
6

0

1
x + 2

dx = 2 ln 2. [4]

3 (i) Show that the equation tan(x + 45◦) = 6 tanx can be written in the form

6 tan2x − 5 tanx + 1 = 0. [3]
(ii) Hence solve the equation tan(x + 45◦) = 6 tanx, for 0◦ < x < 180◦. [3]

4 The polynomialx3 + 3x2 + 4x + 2 is denoted by f(x).
(i) Find the quotient and remainder when f(x) is divided byx2 + x − 1. [4]

(ii) Use the factor theorem to show that(x + 1) is a factor of f(x). [2]

5 (i) Given thaty = 2x, show that the equation

2x + 3(2−x) = 4

can be written in the form

y2 − 4y + 3 = 0. [3]
(ii) Hence solve the equation

2x + 3(2−x) = 4,

giving the values ofx correct to 3 significant figures where appropriate. [3]

6 The equation of a curve is

x2y + y2 = 6x.

(i) Show that
dy
dx

= 6− 2xy

x2 + 2y
. [4]

(ii) Find the equation of the tangent to the curve at the point withcoordinates(1, 2), giving your
answer in the formax + by + c = 0. [3]
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7 (i) By sketching a suitable pair of graphs, show that the equation

e2x = 2− x

has only one root. [2]

(ii) Verify by calculation that this root lies betweenx = 0 andx = 0.5. [2]

(iii) Show that, if a sequence of values given by the iterative formula

xn+1 = 1
2 ln(2− xn)

converges, then it converges to the root of the equation in part (i). [1]

(iv) Use this iterative formula, with initial valuex1 = 0.25, to determine the root correct to 2 decimal
places. Give the result of each iteration to 4 decimal places. [3]

8 (i) By differentiating
cosx
sinx

, show that ify = cotx then
dy
dx

= − cosec2x. [3]

(ii) By expressing cot2x in terms of cosec2x and using the result of part(i), show that

ã 1
2π

1
4π

cot2x dx = 1− 1
4π. [4]

(iii) Express cos 2x in terms of sin2x and hence show that
1

1− cos 2x
can be expressed as1

2 cosec2x.

Hence, using the result of part(i), find

ä 1
1− cos 2x

dx. [3]
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